Innovative SCR Materials and Systems for Low Temperature Aftertreatment

Craig DiMaggio (co-PI), Vence Easterling, Kiran Premchand, Michael Zammit FCA US LLC

Yong Wang (co-PI), Mirek Derewinski, Feng Gao, Chuck Peden, Ken Rappe, János Szanyi, Yilin Wang Institute for Integrated Catalysis Pacific Northwest National Laboratory Program Managers: Jerry Gibbs and Gurpreet Singh

The work was funded by the U.S. Department of Energy (DOE), Vehicle Technologies Office.

June 08, 2017

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Overview

Timeline

- Project starting date:
 - 7/1/2015
- Project ending date:
 - 6/30/2018

Budget

DOE funding:

PNNL

\$500K/Year(\$1.5M total)

FCA US LLC:

\$500K(total)

Barriers

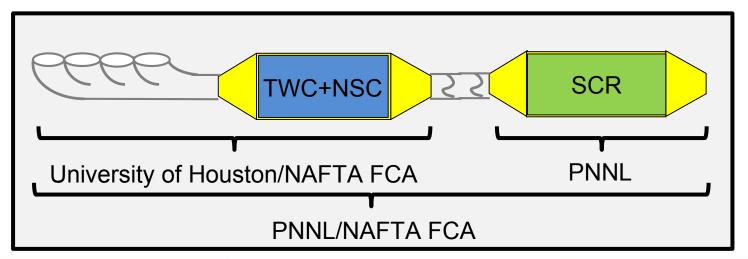
- Low temperature performance
- Lack of cost-effective
 - emission control
- Durability of emissions
 - control devices

Partners

- Pacific Northwest National Laboratory
- FCA US LLC
 - w/U of Houston (FCA in-kind funding)

Relevance

- Address the 150°C Challenge identified from the 2012 USCAR workshop.
- Focus on providing a low temperature enabling SCR catalyst aftertreatment system that will function at very high efficiency to attain the most demanding emissions regulations and thereby facilitate the market introduction of advanced powertrains that will support domestic energy independence and security.
- Strengthen and accelerate this technology transfer of innovative materials and processes from the laboratory environment to vehicle by coupling with system development at FCA US LLC.



Approach/Strategy

CRADA Partner Project Areas of Responsibility:

- FCA NH₃ generation, supplemental NOx control and system integration
- PNNL Low temperature SCR development, supplemental system integration

Year 1		Year 2			Year 3			
Q1 Q2 Q3 Q4		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4					
Characterization/optimization of novel SCR materials								
Laboratory aging studies of novel SCR materials								
NH ₃								
			System comp	onent agir	ng	ì		
			Dyno testing SCR NOx r				reduction	strategies
							8	SCR cost mode

Approach/Strategy

SCR

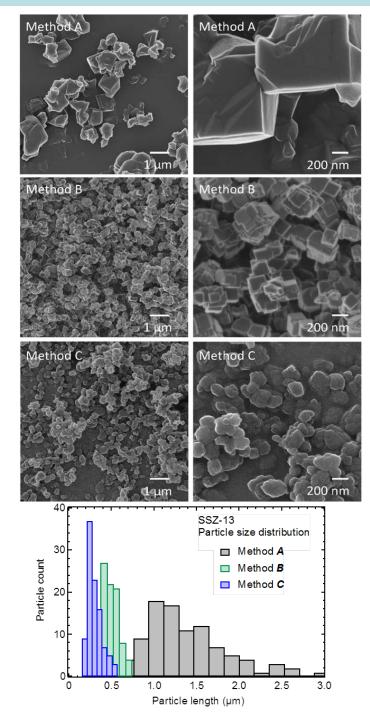
Adapt a newly developed SCR material to function with high efficiency under conditions consistent with low temperature portions of drive cycles.

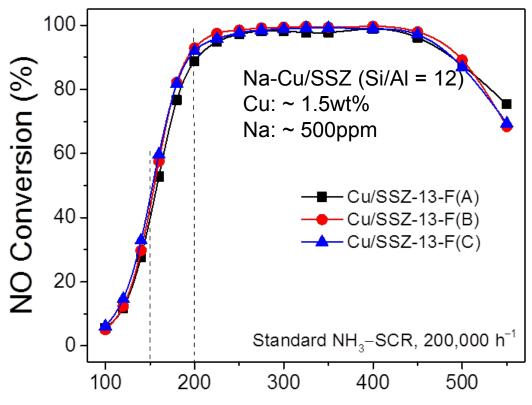
 Demonstrate the SCR catalyst, aged under realistic conditions (lean or stoichiometric), will provide 90% conversion efficiency at/near 150°C.

Aftertreatment System

Demonstrate that a SCR catalyst system will attain Tier III and SULEV30 emissions using an engine or simulated engine FTP cycle.

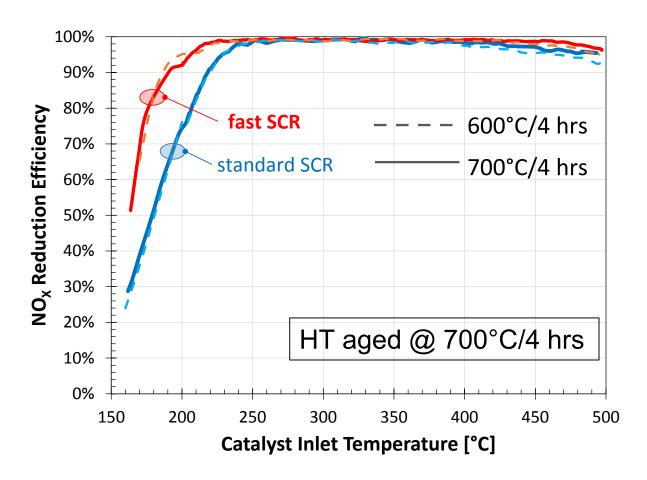
- Evaluate SCR catalyst system activity using alternate upstream NOx control and NH₃ generation strategies.
 - Tier 3 criteria emissions control and GHG minimization
 - Estimate:
 - The fuel penalty
 - Control/OBD complexity
 - Component/system cost


2017 Milestones


- ✓ Initiate realistic aging studies of the optimized first generation catalysts that have been washcoated onto a monolith substrate 12/31/2016 (completed)
- ✓ Determine an optimized composition of the second generation LT-SCR catalyst – 3/31/2017 (completed)
- ✓ Verify sufficient hydrothermal stability of the first generation catalyst formulation – 9/31/2017 (completed)
- ✓ Go/No-Go: Downselect for each passive NH₃ dosing technology – 6/30/2017 (met)

SCR Update (1st Gen. SCR Catalysts)

Reaction Temperature (°C)


- Catalysts prepared using three different methods lead to different particle size of SSZ-13
- Similar SCR performances were obtained (~50% NO conversion at 150°C/75%@175°C)
- No particle size effect on NOx conv.(for both fresh

and aged)

FIAT CHRYSLER AUTOMOBILES

SCR Update (Monolith Bench Testing on 1st Gen. SCR)

12% O₂ 6% CO₂ 6% H₂O 300 ppm NO_x 300 ppm NH₃

35000 GHSV

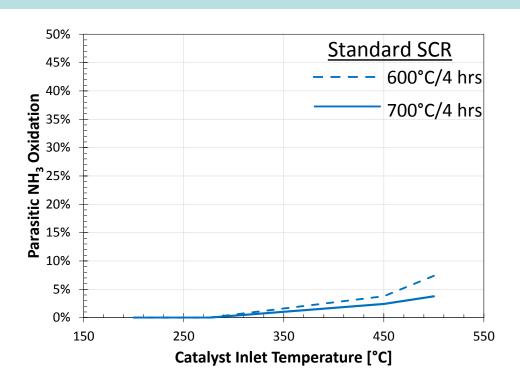
Core size: 1-in OD, 2.4 in L

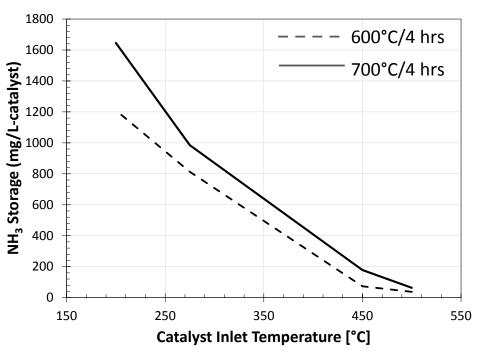
Sample Pretreatment

Core 1 - 600°C/4-hrs

Core $2 - 700^{\circ}\text{C/4-hrs}$

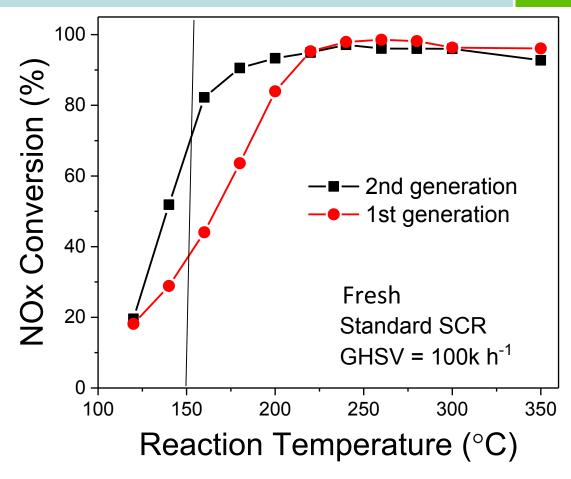
NH₄NO₃ poisoning observed at 170°C and below with both core samples

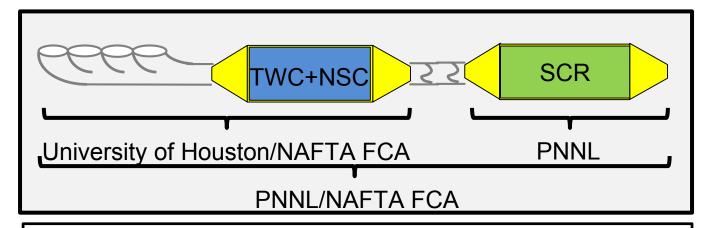

- Fast SCR shows 75-80% NOx conversion efficiency at 175°C.
- Successfully transferred formulation to monolith.
- 700°C aging shows little hydrothermal effect on NOx conversion.
- High temperature activity not compromised.



SCR Update (Monolith Bench Testing on 1st Gen. SCR)

Pretreatment (700°C versus 600°C):


- Increased NH₃ storage with temperature (Cu(OH)⁺ \rightarrow Cu⁺²).
 - 700°C aging not enough to damage Bronsted Acid sites quickly.
- Decreased NH₃ oxidation.
 - Cu(OH)⁺ more active for NH₃ oxidation.
- Both desirable characteristics after aging.


SCR Update (2nd Gen SCR Powder Catalysts)

- New ion-exchange method and a different Cu precursor were used to improve a 2nd generation catalyst for low temperature NOx reduction.
- New Cu SCR Catalyst provides additional active sites and continues to maintain high Cu dispersion.
- 2nd generation catalysts with high Cu loading lead to ~80% NO conversion at 150°C, while the 1st generation was ~40%.

SCR System Integration – Upstream SCR NOx Control Requirements

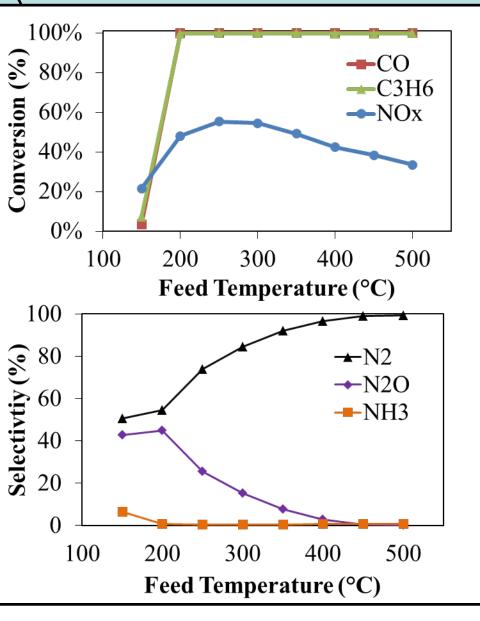
Vehicle Technologies Office

TWC+NSC (Tri-functional):

- Low temperature lightoff of CO/HC oxidation
- NOx storage/release/reaction
- NH₃ generation for SCR

TWC+NSC (Considerations):

- Durability
- Low temperature selectivity toward N₂O
- Sulfur tolerance and effects
- Fuel penalty for regeneration and NH₃ regeneration



TWC+NSC Characterization - (Kinetic Model Considerations)

Vehicle Technologies Office

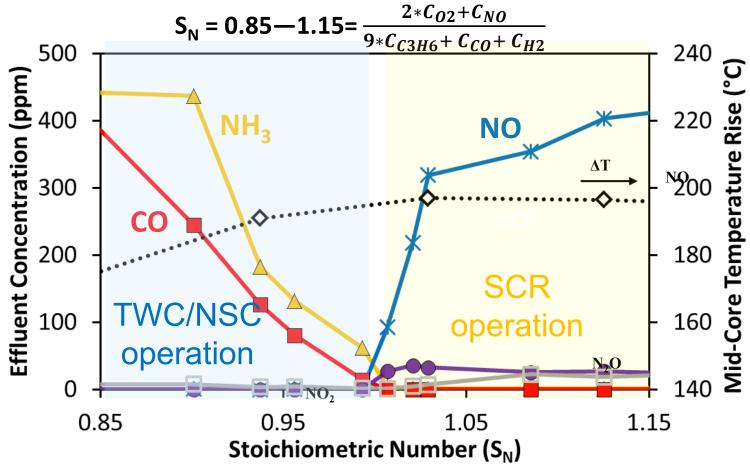
Feed (S_N=1.01):

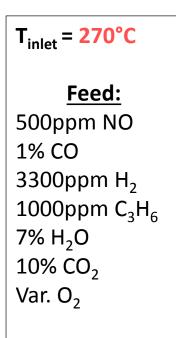
500ppm NO 1% CO 3300ppm H₂ 1000ppm C₃H₆ 7% H₂O 10% CO₂

- ~ Stoichiometric feed
- Low temp CO/HC lightoff
- NOx conversion maximum at 60%
- Window for NOx activity

NOx selectivity

- Selectivity to NH₃ minimal near λ≈1
 - Selectivity to NH₃ much higher under rich condition
- N₂O selectivity greatest below 300°C
- During regeneration conditions, GHG requirements were impacting the TWC+NSC catalyst selection



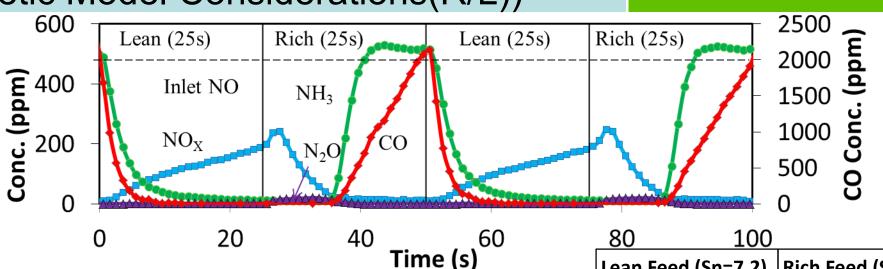


Vehicle Technologies Office

TWC+NSC Characterization - (Kinetic Model Considerations (λ))

TWC+NSC Functional Window

- Must complement SCR window of operation
- Provide CO/HC oxidation at low temperature and high efficiency
- Switch to NH₃ generation quickly (manage OSC content)
- Minimize N₂O generation



TWC+NSC Characterization -

(Kinetic Model Considerations(R/L))

Example of cyclic operation:

81% Lean NOx Storage eff. measured as:

$$\frac{C_{NO,in}*\tau_L - \int C_{NO,out} d\tau_L}{C_{NO,in}*\tau_L}$$

- ANR ~2
- Cycle averaged NO_x conversion ~83%
- NH₃ yield ~44%

Lean Feed (Sn=7.2)

7% H₂O, 10% CO₂ 500ppm NO

5% O₂

1% CO, 0.33% H₂

Rich Feed (Sn=0.49)

7% H₂O, 10% CO₂ 500ppm NO

0.3% O₂

Vehicle Technologies Office

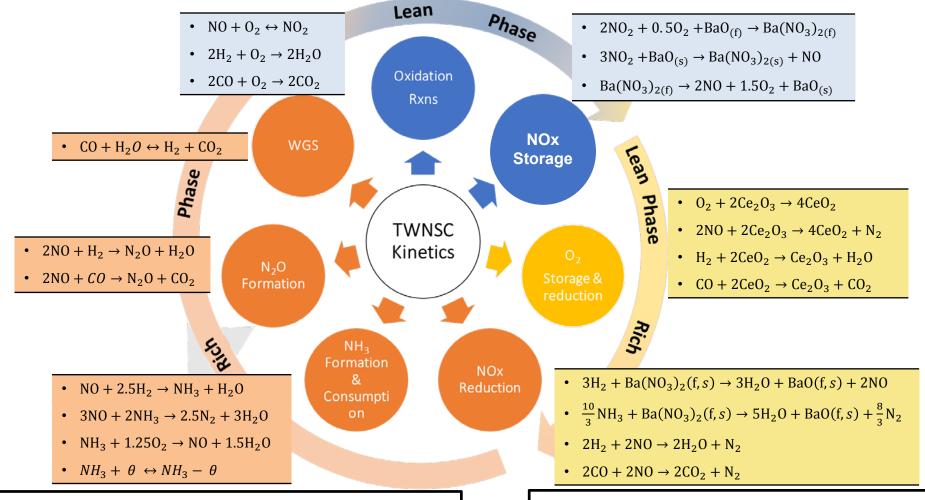
1% CO, 0.33% H₂

Feed temperature = 270°C

Total Cycle Time = 50s

Lean Time = Rich Time = 25s

Rich/Lean Cyclic Operation


- Maximize lean duty time
- Minimize rich duty time (fuel penalty)
- Minimize N₂O generation
- Match OSC content to desired

TWC+NSC Characterization - (Kinetic Model Rxn Network Addressed)

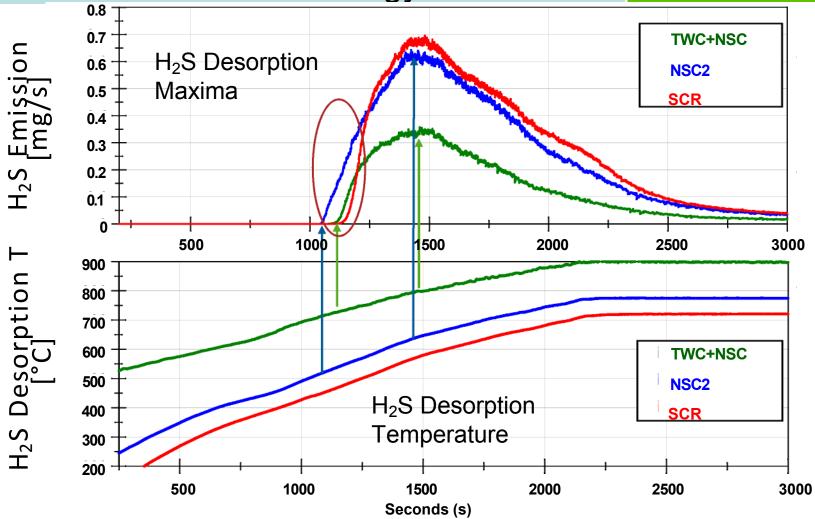
Vehicle Technologies Office

TWC+NSC kinetic model incorporates:

- Rich/lean operation
- Aging effects
- Details of the CO/HC oxidation reactions as well as NOx reduction

[3] K. Ramanathan et al., Ind. Eng. Chem. Res. (2011)

NOx Storage: Dual-site construct (fast & slow sites) approximates Pt + BaO proximity and associated stored NOx diffusion limitations


^[1] Bhatia et al., J. Catal. (2009)

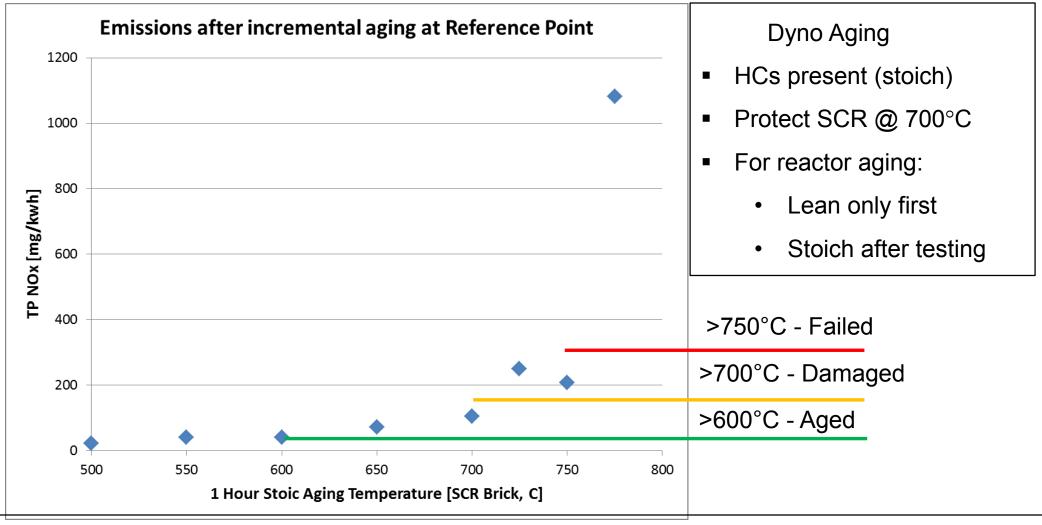
^[2] B.M. Shakya et al., Chemical Engineering Journal (2014)

System Integration Consideration –

Vehicle Technologies Office

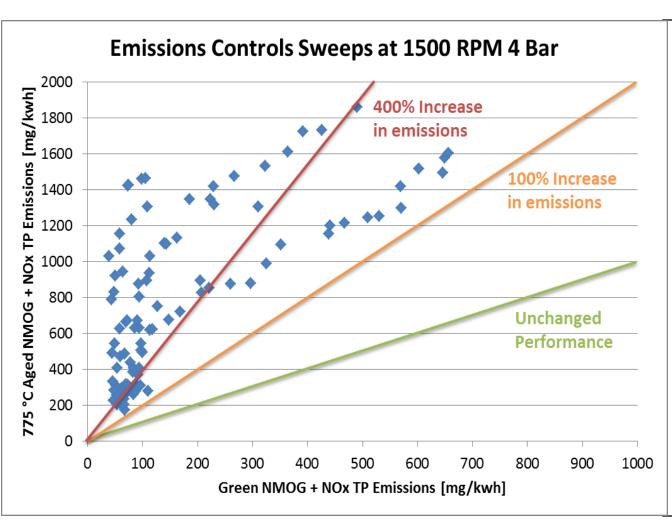
TWC/NSC/SCR DeSox Strategy

- Greatest system efficiency requires the simultaneous DeSOx of components
- Formulations manipulated to perform temperature programmed DeSOx



System Integration Consideration – SCR Aging Environment

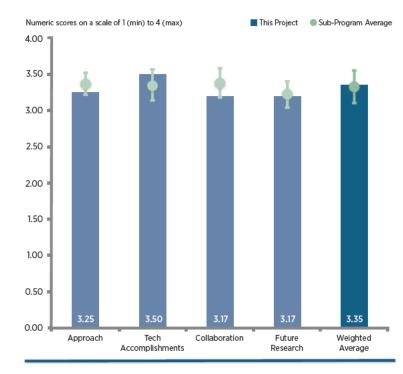
Vehicle Technologies Office

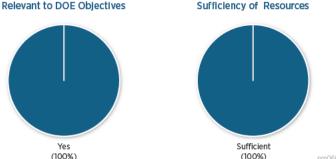

- $\Lambda = 1$ aging reduces time/temperature at which SCR performance degrades
- Standard HT aging not appropriate for passive NOx control systems

System Integration Consideration – SCR Aging Effects on System Efficiency

Vehicle Technologies Office

- System performance severely damaged at previous best operating point
- Minimum emissions during sweep increases from 38 mg/kWh to 172 mg/kWh
- Majority of degradation from decrease in NOx conversion
- SCR must be protected from high temp under engine operating conditions


Response to Previous Year Reviewers' Comments


Vehicle Technologies Office

- Nearly all the comments from the reviewers last year were very supportive and complimentary.
- Some comments/recommendations included:
 - .. Why a major catalyst supplier is not involved...
 - ...need to add the effect of sulfur on the new formulations...
 - ...washcoat loading of SCR catalyst is very important and should be included in future work...

Our response:

- A catalyst supplier is now involved in transitioning SCR catalyst to monolith form and related consultations.
- Effect of sulfur is being included in the evaluation and development of 2nd generation SCR catalysts.
- A catalyst supplier is indeed involved in this important area .

Institute for INTEGRATED CATALYSIS

Collaborations/Interactions

PNNL

- Low temperature SCR catalyst development
- Advanced characterizations

FCA US LLC

- Primary upstream NOx control and passive NH₃ generation
- Dyno engine control inputs
- System integration
- Coordinating U of Houston TWC+NSC characterization/kinetic model

U of Houston (Mike Harold)

- Characterization and kinetic model development of TWC+NSC catalyst
- NOx control, NH₃ generation catalyst, regeneration strategies, aging effects

Catalyst supplier (FCA in-kind)

- SCR material transfer to monolith
- Technology consultation
- Conference calls are held typically once every month to discuss progress and direction.
- Bi-annual face-to-face meetings. Latest group review (12/16).

Planned Future Work

- Development of 2nd generation SCR catalysts to meet the conversion efficiency target.
- Investigate aging stability and sulfur tolerance of 2nd generation SCR catalysts.
- Alternatives to the initial TWC/NSC+SCR catalyst for NOx control and NH₃ generation.
- Optimize system integration efforts and durability.

Summary

- Demonstrated lightoff of the 1st generation SCR catalyst is improved over industry standard (>75% NO_x @ 175°C).
- Successfully synthesized a large batch of Cu/SSZ catalyst and transferred the material to a monolith for pre-vehicle evaluation.
- Bench reactor testing of SCR monolith confirmed performance.
- Identified and successfully applied a research direction for development of a 2nd generation SCR catalyst (80% conv. @150°C).
- Down selected alternatives to urea NH₃ generation.
- Derived a kinetic model to predictively control the function of a TWC+NSC catalyst technology for NOx control & NH₃ generation.
- Established dyno test baseline system (TWC/NSC + SCR).

